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Abstract. Exploring the hypersurface of the energy
landscape of proteins remains largely limited owing to
the local minimum problem. We present a new hybrid
space minimization procedure (HSMP) that couples a
side-chain combinatorial search in the rotamer space
with a classic minimization procedure in the full dihedral
space including backbone variables. The aim of this
approach is to enhance the robustness of the overall
minimization process by avoiding some of the local
minima conditioned by the molecular gear formed by the
side chains. The results show, for series of test cases, that
lower energies are obtained using HSMP compared to
a simple minimization. Perspectives for using such an
approach are presented.
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1 Introduction

Statistical mechanics and computer simulation are being
used to gain an understanding of features of protein
folding or physicochemical properties. A major obstacle
in the computation of protein structures is the multiple-
minima problem that arises from the existence of many
local minima in the multidimensional energy landscape
of the protein. Several attempts have been made to
overcome this limitation, ranging from limiting the
number of variables describing the system (this can be
achieved by switching from Cartesian coordinates to
internal coordinates or by using simplified models
to describe a polypeptidic chain [1]) to focusing on
improving the search efficiency of the algorithms em-
ployed. The latter paradigm has led to methods such as
numerous Monte Carlo/simulated annealing variants
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[2-6] or genetic algorithms [7, 8] . Attempts to modify
the energy functions that simplify the energy landscape
of the protein or better fit the native structure of
the proteins have also been reported [9—12]. Here, we
explore a simple protocol based on the idea that most
of the complexity of the energy landscape of proteins
is associated with the tight packing of the side chains.
Thus, in the case of energy minimization, it is mostly
side-chain conformations that will be optimized, while
the backbone will mostly undergo the consequences of
the modification of the side-chain conformations. To
overcome part of this unbalanced process, a classical
minimization procedure, performed here in the dihedral
space of the protein, is coupled with conformational
sampling of the side chains performed in the rotamer
space. The algorithm thus evolves in a hybrid space. The
sampling of the side chains is expected to allow the
minimization to overcome some barriers that in turn will
result in a better balance for the backbone optimization.

2 Materials and methods

2.1 Energy calculation

The calculation of the energies of the proteins was achieved using
the Flex force field [13, 14]. This force field uses the dihedral space
representation and combines classical energy components:

E = Etor + Eelec + Evaw + EHbonds 5

where Ey; is the energy of torsion associated with dihedral angles,
E.ec the energy associated with the electrostatic interactions, Eygw
the nonbonded van der Waals interactions energy, and Eppongs the
energy associated with hydrogen bonds.

The calculations were performed in vacuo, and we used a
distance-dependent representation for the dielectric constant of
the electrostatics contribution:

Eg. = 0:0;/exRi; where
er = D — 0.5(D — Do) (RS* + 2RS + 2) exp(—RS) .
The values used here are D =78, Dy = 4, and S = 0.356.

2.2 Energy minimization

Energy minimization was performed using the N1QN3 minimizer
[15]. It belongs to the variable storage quasi-Newton class of mini-



mizers and uses the BFGS formula. In such a minimization, the
minimizer iteratively estimates the inverse of the Hessian (H~') to
guide the search. However, the estimation of H~! is not accurate until
a number of iterations have been performed. Until then, the mini-
mization is closer to a steepest descent. It is important to note is that
NI1QN3 allows a warm restart (i.e. restarting after interruption).

2.3 Side-chain cluster conformational sampling

The sampling of the side chains was performed using the rotamer
approximation to limit the size of the search. Here, the library size
was of 602 rotamers to describe the 20 amino acids except glycine
and alanine, for which no dihedrals involving heavy atoms exist,
and proline, for which the conformation is coupled to that of the
backbone. This catalogue corresponds to a 214-rotamer library [16]
supplemented by subconformations generated according to the
variance associated with each rotamer. Given one side chain,
a cluster was defined as the side chains that surround it, using
a criterion of distance between the geometric center of a sphere
including all possible rotamers for a side chain. Usually, the size
of the clusters is less than 6, which allows exhaustive sampling
amongst all the possible combinations of rotamers describing the
conformations of the side chains of the cluster and the evaluation of

N1QN3
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the energy associated with each. Here, we are only looking for the
combination of rotamers associated with the lowest energy.

2.4 Hybrid space minimization procedure

The hybrid space minimization procedure (HSMP) is as reported in
Fig. 1.

At given steps, the minimization is stopped and a side-chain
conformational sampling cycle is performed. For amino acids sat-
isfying some triggering condition, a cluster of side chains is defined
and a combinatorial search in the rotamer space is performed. On
exiting the sampling, the new conformation is accepted if its energy
is lower than that of the starting conformation. Once all the clusters
are sampled, the gradients are recomputed and the minimization
restarted.

Several critical parameters are

— The iteration at which side-chain sampling starts.

— The step of the sampling process, i.e. the number of iterations
between two samplings.

— The stopping criterion for the sampling process. Here, we use a self-
learning criterion to stop side-chain sampling. It depends on a
count of the number of times no gain was obtained for the last
samplings.

'
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Fig. 1. Flowchart of the hybrid space

minimization (HSM) procedure
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— The trigger of the sampling centered on a given side chain. In the
present study, we use an energy threshold. For one side chain, the
existence of energy contacts larger than the threshold will trigger
the sampling.

2.5 Selection of proteins and generation of neighbor conformations

Several proteins were chosen from the Protein Data Bank. For each
protein, several different conformations were generated. For
monomers, they were generated using a random perturbation of the
backbone (only ¢ and i angles were affected). The perturbation
was obtained as the results of numerous (1000) small deviations
(usually close to 1°) applied to randomly selected backbone angles.
Some control was performed on the root mean square (rms) devi-
ation of the backbone, as well as on the energy deviation relative to
the crystallographic conformation. This was done in order to avoid
too unrealistic conformations (i.e. no conformations exhibiting
crossing backbones or backbone-backbone steric conflicts can be

Table 1. Proteins used for the analysis. Entry code: the Protein
Data Bank code of the crystallographic structure of the protein.
Size: size in amino acids

Protein Entry Size
(abbreviation) code

Ubiquitin-conjugating enzyme laak 150
Guanylate kinase 1gky 188
Lambda repressor 1Imb 179
Elafin/porcine pancreatic elastase complex 1fle 276
Idiotope—anti-idiotope fab—fab complex Icic 223

selected). For dimers, the relative orientation of the monomers was
modified graphically, using XmMol [17]. For each backbone con-
formation, the side chains were repositioned, as in a modeling case.
In the present work, we used the SMD procedure [18]. For dimers,
the backbone was kept rigid during the minimization.

3 Assessment of the efficiency of the HSMP
3.1 Procedure calibration

First, one notes that, despite modifying the values of the
variables externally to the minimizer, the HSMP does
not affect the ability of NIQN3 to converge. For this,
the warm restart facility of NIQN3 has to be used after
side-chain sampling. Not doing so leads in some cases
to premature termination of the minimization, which is
not surprising since affecting the variable values also
disrupts the search for the descent direction. Using a
warm restart, we force the first descent direction to be
—H;elpgstep, avoiding such a trap. Reaching convergence
using the HSMP suggests that it does not lead to any
dramatic inconsistency with F~!.

The sensitivity of the HSMP to some parameters is
reported in Table 2 for three datasets. The best results
were obtained when starting the HSMP from iteration
10, each five iterations, and with an energy threshold
to trigger conformational sampling of 1 kcal/mol (col-
umn 4). We will discuss other results taking those as a
reference.

Table 2. The sensitivity of the hybrid spare minimization procedure (HSM P)

BBconf AE? AE! AEY* AE; AEgg AEgp AEss Asip Acpy
1 2 3 4 5 6 7

laak-tf —-45.85 -24.6 —88.5 -108.1 -50.3 -56.4 1.4 1031 2552
laak-05 -29.31 41.1 -81.4 -96.5 -8.2 -51.2 -37.1 -402 -282
laak-10 32.84 78.9 -11.4 -53.3 -44.9 22.5 -30.9 —-1262 —-1671
laak-15 38.63 37.3 —47.8 -59.7 39 -36.6 -27.0 1239 3173
laak-20 —48.99 -54 —153.3 —151.6 -22.4 -91.8 -374 -322 —188
1gky-tf 204.17 67.8 13.5 -52.3 -24.5 -16.5 -11.3 —-1708 —4429
1gky-05 102.35 364.2 -12.6 —44.1 5.3 —55.5 6.1 886 3197
1gky-10 101.69 145.8 10.3 —-34.4 -5.6 -31.0 2.2 662 2268
1gky-15 216.43 397.2 1.37 —49.1 -1.6 -49.8 2.3 1071 3293
1gky-20 161.61 307.9 -39.0 —46.0 -2.8 -30.6 -12.6 -2154 —-4064
1lmb-tf —53.08 -19.9 —-68.0 =72.7 -17.3 -76.8 214 —1246 —5839
1lmb-05 -30.44 -3.6 -30.6 -22.8 10.0 -37.6 4.8 —78 186
1lmb-10 -27.53 —0.1 —43.7 -7.8 -39 -28.2 24.3 -304 —-1067
1lmb-15 -74.91 —55.3 —106.5 -122.0 -234 -93.1 -5.5 12 2006
11mb-20 -12.97 29.4 31.1 —42.4 9.63 -85.8 33.97 —1011 —4248
1fle-1 — — — -129.8 3.6 -65.8 -67.6 66 1473
1fle-2 — — — —113.5 -0.8 -58.3 -54.4 34 522
1fle-3 — — — —195.8 2.7 -109.3 -89.2 12 1869
Icic-1 — — — —178.8 -0.6 -77.8 -100.4 20 2549
1cic-2 - - — -131.1 -0.3 -82.1 —48.7 -54 2751
Icic-3 — — — -141.2 -0.6 -62.7 -77.9 109 2665

BB ons: starting backbone conformation (see Sect. 2)

AEZ: energy difference obtained with the HSMP starting iteration 10, unlimited, with a step of five iterations, using a threshold of 5 kcal/mol
AE!: energy difference obtained with the HSMP starting iteration 10, unlimited, with a step of five iterations, using a threshold of 1 kcal/mol
AE3: energy difference obtained with the HSMP starting iteration 10, unlimited, with a step of five iterations, using a threshold of 1 kcal/mol
AE3*: identical to AE3, but with the HSMP limited to 50 first iterations

AEgp, AEsp, AEss: energy decomposition of AE|, as backbone-backbone (BB), backbone-side chain (SB) and side chain—side chain (SS)
Asip: HSMP number of iterations at convergence, compared to standard minimization (for AE;). Reference is standard minimization
Acpu: HSMP computing time (seconds) at convergence, compared to standard minimization (for AE))



3.1.1 Efficiency of consecutive HSMP cycles

As shown in Fig. 2, most of the efficiency of the HSMP
is reached in the early steps of the minimization. Since
we are coupling side-chain conformational sampling and
minimization, this can be interpreted as a combination
of two effects. First, the conformational sampling is
per se less and less efficient since it selects side-chain
conformations of better and better energy. Second, the
energy reference is lower and lower as the minimization
process goes along.

Could the late conformational samplings be skipped ?
The results obtained when forcing the HSMP to stop
at iteration 50 are reported in column 3. Except for
some cases where energies can be considered as identical
(laak-20, lgky-15), the energy values obtained can be
largely affected by stopping the HSMP too early. For
example, the energy search differs by as much as 40 kcal/
mol for laak-10, while the sum of the gains of the cycles
performed after iteration 50 (column 4) is 20 kcal/mol.
Thus, late samplings still seem to allow some better
scrutiny of the energy landscape.

3.1.2 Influence of the HSMP step

How does the HSMP perform if sampling is performed
at each step of the minimization? As shown in column 2,
this leads to somewhat catastrophic results, the energies
obtained being in many cases much worse than those
obtained by standard minimization (positive values).
A possible interpretation is that in such a case the
consecutive warm restart cannot allow a correct estima-
tion of H~!. Several tests (not reported) seem to indicate
values of the step of the order of five iterations as good
values to ensure both efficient side-chain sampling and
the preservation of a correct minimization.

3.1.3 Influence of the energy threshold
The results obtained using a threshold of 5 kcal/mol
instead of 1 kcal/mol are reported in column 1. Com-

HSMp energy gain during minimization

(1aak test set)

2y

150 |-

1M -

Gain (KCal/Mole)

1._L$:_~WA._=

o 50 (111 150
Iterations

Fig. 2. Gain resulting from side-chain conformational search as a
function of the iteration number
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pared to the results obtained for a threshold of 1 kcal/
mol, worse results are obtained in all cases, except for
1Imb-05 and 1lmb-10. For many cases, the HSMP also
leads to final energy values higher than those obtained
by standard minimization (positive values). Possible
causes could be that too few cycles of conformational
sampling are performed owing to no side-chain selection
for late cycles or that too few side chains are selected to
undergo the conformational sampling, leaving clusters
trapped into local minima in the early iterations. In fact,
the overall number of cycles of conformational sampling
is not systematically lower than for the 1 kcal/mol
threshold. For example, the HSMP is stopped at
iteration 139 (or 94) compared to 149 (or 114) for
laak-10 (or laak-05). However, the gain reached by
side-chain sampling after iteration 25 is only 17 kcal/
mol, compared with 42 kcal/mol obtained with a
threshold of 1 kcal/mol. Also, the number of clusters
of side chains examined is much lower: 978 versus 2329
for laak-05, 1156 versus 2934 for laak-10, or 1147
versus 2613 for Igky-15. Thus, it seems important that
the conformational sampling includes a large fraction of
side chains.

3.2 Procedure cost

Since the procedure affects the conditioning of the
minimizer through its evaluation of H~!, as well as the
search for the descent direction, one can wonder whether
the HSMP will not result in much longer minimizations.
As shown in Table 2 (column 8), the use of the HSMP
does not modify dramatically the number of steps of the
minimization. In most cases, it is rather close to the
number of steps used for the standard minimization;
however, it can be much longer (laak-15 4000 steps
versus 2761, 1cic-3 194 steps versus 85). In some other
cases, it can result in much shorter minimizations (1gky-
20 3682 steps versus 5836, laak-10 2372 steps versus
3634).

Since the procedure requires additional energy com-
putation during side chain sampling, we also report in
column 9 the differences in the computing time induced
by the HSMP. Again, no obvious tendency can be
derived for the monomeric proteins. The difference can
be large (close to 1 h), but in some cases, the use of the
HSMP leads to important gain as for 1lmb-tf. Different
results are obtained for the dimers, for which the use of
the HSMP can result in doubling the computing cost.
For example, for lcic-1, we have only a difference of
20 steps of minimization, but more than double the
computing cost (2828 s versus 1354 s), for 1671 clusters
sampled.

3.3 Improvement in the energy search

Considering our best results (column 4), it is notable
that, using such parameterization, the use of the HSMP
leads in all cases to conformations of lower energy than
those obtained with a classical minimization procedure
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(without the HSMP). Also, the order of magnitude of
the gain is far from negligible: the smallest gain,
obtained for 1gky-10, is still 34.4 kcal/mol.

On analyzing the different components of the energy
(backbone—backbone, Egg, backbone-side chains, Esg,
side chains—side chains, Ess), one observes for mono-
meric chains that, in most cases, the best gain is for the
backbone-side chain component, while the side chain—
side chain or backbone—-backbone energy differences can
be unfavorable in some cases. Hence, a major effect of
the procedure seems to be its ability to solve confor-
mational maladjustments between backbone and side
chains. This makes sense since when positioning side
chains prior to the minimization, no backbone confor-
mational flexibility was considered at this stage. Thus, a
possible interpretation is that, in the rotamer space and
for a fixed backbone conformation, while side chain—side
chain conflicts can be reasonably solved, side chain—
backbone conflicts are much worse solved, since only
some conformational flexibility of the side chain con-
formation and none of the backbone can be used.

For the dimers, the goal of the present tests was to
assess whether the HSMP could be efficient for semi
flexible docking, and the backbone of the monomers
was locked. Hence Epp represents only the difference in
energy due to the relative positions of the individual
monomers. The balance between Esg and Esg appears
more equilibrated.

Table 3. Root-mean square deviations (rmsd)

BBconf rmsd! rmsd? rmsdf Yoy1-2 %!}lsj‘gp
1 2 3 4 :
laak-tf 3.62 1.75 3.57 90 57
laak-05 1.80 1.86 2.38 85 55
laak-10 2.42 2.23 2.82 82 55
laak-15 2.29 3.71 4.21 85 49
laak-20 345 3.43 3.00 85 47
1gky-tf 1.93 2.54 1.77 96 76
1gky-05 2.28 2.25 1.22 95 66
1gky-10 2.93 2.76 0.97 93 76
1gky-15 2.05 2.06 1.45 94 75
1gky-20 2.79 2.97 1.60 90 69
1Imb-tf 3.96 2.39 2.26 96 62
1lmb-05 2.09 2.87 1.73 97 72
1Imb-10 2.64 2.97 1.54 96 71
1lmb-15 3.10 2.25 2.18 92 63
1Imb-20 4.06 2.51 2.68 96 65
1fle-1 0.29 0.42 0.32 95 79
1fle-2 0.41 0.55 0.46 97 81
1fle-3 0.78 0.68 0.89 96 87
Icic-1 0.84 1.07 0.40 97 80
Icic-2 0.78 0.98 0.55 96 85
Icic-3 1.27 1.65 1.34 95 74

BB ons: starting bgckbone conformation (see Sect. 2)

rmsd!: C, rmsd (A) between starting and final conformations, using
standard minimization

rmsd?: C, rmsd (A) between starting and final conformations, using
the HSMP minimjzation (for AE;)

rmsd%: C, rmsd (A) between standard and the HSMP minimized
protein conformations

%12 (or %YPMP): fraction of side chains for which final y; and z,
are not different by more than 40° from initial ones (standard
minimization, or the HSMP)

3.4 Induced modification of the protein conformation

The C, rms deviations induced by the different minimi-
zation procedures (columns 1 and 2) and the C, rms
deviations between the final conformations are reported
in Table 3. rms deviations induced by the standard and
HSMP minimizations are close for most cases. For laak-
tf, 1lmb-tf, 1lmb-15, and 1lmb-20, the HSMP leads
to smaller deviations, while for laak-15, 1lmb-10, and
Icic-3 the HSMP leads to larger deviations. However,
comparing the final conformations shows that the
minimization procedures lead to conformations that
can be rather different, with deviations as large as 4.21 A
for laak-15. In this case, however, most of the deviation
comes from the N-terminal extremity. By fitting the
structures removing this loop, the rms deviations
decrease to 1.84 A for the standard minimization and
1.47 A for the HSMP. As shown in Fig. 3, the resulting
conformation of the HSMP is much closer to the
starting one, the major differences being located in
the secondary structure junctions, while the deviation is
more widely spread for the conformation resulting from
the standard minimization. Backbone—backbone ener-
gies are similar (Table 2, column 5). Hence, not using the
HSMP, the backbone of the protein seems to undergo
larger modifications as a means to solve the energy
descent, while increased side-chain flexibility resulting
from the HSMP does not require it.

Fig. 3. Superimposed structures of laak-15 onto the crystallo-
graphic conformation (laak). Pink: conformation obtained by
standard minimization. Yellow: conformation obtained using the
HSM procedure



In terms of side-chain conformations, columns 4 and 5
show that using the HSMP results in much more confor-
mational change than the standard minimization, which
was expected. While the latter preserves more than 90% of
¥, and y,, the former modifies as much as 30% of them.

4 Conclusions

The HSMP procedure was designed with the aim of
allowing a better energy search and a better balance
between the optimization of the side-chain and main-
chain conformations. Our results show that the correct
parameterization of such a procedure can indeed lead
to the quasi-systematic energy gain compared to the
standard minimization, with nonsignificant cost in terms
of the number of iterations or computing cost for
monomers. In terms of conformations, the use of the
HSMP leads to rather different backbone conformations
and allows more side-chain conformational changes.

Such a procedure, tested here in the case of a simple
minimizer could be embedded in more sophisticated
search procedures, such as genetic algorithms or Monte
Carlo techniques. However, reaching the experimental
conformation also poses the problem of the accuracy of
the force field employed.
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